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Abstract
Using the definition of a self-adjoint operator, we give the self-adjoint
extensions of the Laplacian and Aharonov–Bohm operators with a potential
supported on a circle of radius R. This study gives rise to interesting results,
namely all self-adjoint extensions are given by a four-parameter family of
self-adjoint operators, reproducing a matrix representation for U(2) symmetry.

PACS numbers: 03.65.Nk, 02.30.Tb

An extremely useful mathematical framework for dealing with quantum theory is the operator
analysis in Hilbert space. In this context, the quantization of operators plays a major role.
In the present letter, attention will be paid to the quantization of Aharonov–Bohm operator
with an additional potential supported on a circle of radius R. The Aharonov–Bohm effect has
received much attention in recent years [1–12]. This phenomenon is based on the fact that there
are measurable effects that can be attributed directly to the electromagnetic vector potential
and only non-locally to the magnetic field itself [1]. Numerous potential applications, for
instance in superconductivity, and the fundamental significance of electromagnetic potentials
in the quantum theory motivate the interest in this phenomenon.

As far as the theoretical work is concerned, it is worth knowing that in [11], Exner et al
provide a remarkable study on the most generalized boundary conditions for the Aharonov–
Bohm flux intersecting the plane at the origin on the background of a homogeneous magnetic
field. They use the standard techniques based on self-adjoint extensions and find a four-
parameter family of boundary conditions; the other two parameters of the model are the
Aharonov–Bohm flux and the homogeneous magnetic field. These generalized boundary
conditions may be regarded as a combination of the Aharonov–Bohm effect with a point
interaction. In an earlier work [5], Dabrowski and Šťovı́ček investigate a five-parameter
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family of Hamiltonian operators which describe a quantum particle interacting with a thin
solenoid and a magnetic flux. One of the five parameters is just the value of the flux and the
other four correspond to the strength of a singular potential barrier (sort of a combination of
Dirac δ and δ′) and can be interpreted as penetrability coefficients of the shielded solenoid.
A general operator of this family corresponds to an intricate mixture between the Aharonov–
Bohm effect and the point interactions which is manifested more concretely via the mixing
between the angular and the radial boundary conditions. For details, see [5].

More recently, Exner and Tater [12] discuss of a ring-shaped soft quantum wire modelled
by δ interaction supported by the ring of a generally nonconstant coupling strength. They
investigate spectral properties of a two-dimensional quantum particle subject to a δ interaction
supported by a circle ring, plus possibly a magnetic field. In particular, in this work, these
authors illustrate that it is rather the geometry of the interaction curve than its topology which
determines the spectral properties. They also consider the situation when the coupling strength
is randomly varying and when the particle is exposed to a magnetic field perpendicular to the
ring plane.

In this letter, we provide a study based on a straightforward and a ‘very natural’ theoretical
construction of the self-adjoint extensions of the Aharonov–Bohm operator Hα with an
interaction potential V supported on a circle of radius R, defined as follows:

HB = Hα + V. (1)

Taking the origin of the coordinate system at the position of the solenoid and introducing the
vector potential A(x, y) = −αce−1(−yr−2, xr−2), where r2 = (x2 + y2) and −2πcαe−1 is
the magnetic flux through the solenoid, the formal free Aharonov–Bohm operator Hα written
in polar coordinates reads

Hα = − ∂2

∂r2
− r−1 ∂

∂r
+ r−2

(
i

∂

∂φ
− α

)2

. (2)

In (2), we have fixed h̄ = 1,m = 1/2. Moreover, without loss of generality, we suppose
0 < α < 1.

Using the partial wave expansion, the Hamiltonian (2) can be reduced to each subspace
of fixed angular momentum and a complete set of eigenfunctions can be constructed. All
the possible self-adjoint (s.a.) extensions of this operator defined on C∞

0 (R2\{O}) are also
investigated by Adami and Teta [6]. Since the deficiency indices are (2, 2), there is a family of
s.a. extensions parametrized by the unitary map U from one deficiency subspace to the other.
Since the subspaces have two dimensions, the parametrization involves four real parameters.
See [6] and references therein for more details on such parametrizations.

The radial part corresponding to the free Aharonov–Bohm operator Hα in (1) reads [1]

hαm :=
[
− d2

dr2
+

(α + m)2 − 1
4

r2

] ∣∣∣∣∣
{C∞

0 (R2\{∂�(O,R)})}
(3)

where �(O,R) is a closed circle of radius R centred at the origin of R
2. Each of the extensions

of the operator will be characterized by a specific behaviour, i.e. boundary conditions for the
elements of the domain near r = R.

Let us also consider the non-negative Laplacian operator (obtained by setting
(α + m)2 − 1

4 = 0 in (3))

H0 = −�|{C∞
0 (R2\{∂�(O,R)})} := − d2

dr2

∣∣∣∣
{C∞

0 (R2\{∂�(O,R)})}
. (4)
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Then let us consider the closed and non-negative operators Ḣ 0 and Ḣ α , respectively:

Ḣ 0 = H0|{C∞
0 (R2\{∂�(O,R)})} (5)

with the domain

D(Ḣ 0) = {
u ∈ L2(R2) ∩ H

2,2
loc (R2)/u(∂�(O,R)) = 0,H0u ∈ L2(R2)

}
(6)

Ḣ α = Hα|{C∞
0 (R2\{∂�(O,R)})} (7)

with the domain

D(Ḣα) = {
u ∈ L2(R2) ∩ H

2,2
loc (R2)/u(∂�(O,R)) = 0,Hαu ∈ L2(R2)

}
(8)

where H
m,n
loc (�) is the local Sobolev space of indices (m, n).

Decomposing the Hilbert space H = L2(R2) with respect to angular momenta, i.e.
introducing spherical coordinates (with centre R), we obtain

L2(R2) = L2(R+)
⊗

L2(S1) (9)

where S1 is the unit circle in R
2. Using now, in addition, the isomorphism U in order to

remove the weight factor r from the measure:

U :

{
L2((0,∞); r dr) −→ L2((0,∞); dr) ≡ L2((0,∞))

u �−→ (Uu)(r) = √
ru(r)

(10)

we can express (9) as

L2(R2) =
m=+∞⊕
m=−∞

U−1(L2(R+))
⊗ [

eimφ

√
2π

]
m ∈ Z. (11)

With respect to this decomposition, Ḣ α equals the direct sum

Ḣ α =
m=+∞⊕
m=−∞

U−1ḣα,mU
⊗

11 (12)

where the operator ḣα,m in L2(]0,∞[) is defined by

ḣα,m = − d2

dr2
+

(α + m)2 − 1
4

r2
r > 0 (13)

with the domain

D(ḣα,m) = {
u ∈ L2(]0,∞[, dr) ∩ H

2,2
loc (]0,∞[); u(0+) = 0 if (α + m)2 − 1

4 = 0;
u± = 0;−u′′ +

(
(α + m)2 − 1

4

)
r−2u ∈ L2((0,∞))

}
m ∈ Z. (14)

Here and in the following, we set u± := limε−→0 u(R±ε).
Note that, when (α + m)2 − 1

4 = 0, we recover the operator

ḣ0 = − d2

dr2
(15)

with the domain

D(ḣ0) = {
u ∈ L2(]0,∞[, dr) ∩ H

2,2
loc (]0,∞[); u(0+) = 0; u± = 0;−u′′ ∈ L2((0,∞))

}
.

(16)

The adjoint operator ḣ∗
0 of ḣ0 is then given by

ḣ∗
0 = − d2

dr2



L526 Letter to the Editor

with the domain

D(ḣ∗
0) =

{
u ∈ L2(]0,∞[, dr) ∩ H

2,2
loc (]0,∞[−{R}); u(0+) = 0;

u+ = u− ≡ u(R);− d2

dr2
u ∈ L2(]0,∞[)

}
. (17)

The adjoint operator ḣ∗
α,m of ḣα,m is defined by

ḣ∗
α,m = − d2

dr2
+

(α + m)2 − 1
4

r2

with the domain

D(ḣ∗
α,m) =

{
u ∈ L2(]0,∞[, dr) ∩ H

2,2
loc (]0,∞[−{R}); u(0+) = 0 if (α + m)2 − 1

4
= 0;

u+ = u− ≡ u(R);
(

− d2

dr2
+

(α + m)2 − 1
4

r2

)
u ∈ L2(]0,∞[)

}
m ∈ Z.

(18)

From (12), we obtain

Ḣ ∗
α =

m=+∞⊕
m=−∞

U−1ḣ∗
α,mU

⊗
11. (19)

Let us now restrict our analysis to the subspace of D(hα,m) in which the investigated operator
hα,m is self-adjoint, i.e in which for any u, v, we are in a position to define the inner product
with the property:

〈v|hα,mu〉 = 〈hα,mv|u〉 (20)

associated with the boundary conditions expressed through an invertible matrix M such that(
u+

u′
+

)
= M

(
u−
u′

−

)
(21)

where

M :=
(
M11 M12

M21 M22

)
Mij ∈ C.

Thus, relation (21) takes the form

u+ = M11u− + M12u
′
− u′

+ = M21u− + M22u
′
−. (22)

The property (20) implies

−v

+u

′
+ + v


−u′
− − u−v
′

− + u+v

′
+ = 0. (23)

Using the boundary conditions (22), equation (23) can be written as{−v

+M21 + v
′

+ M11 − v
′
−
}
u− +

{−v

+M22 + v
′

+ M12 + v

−
}
u′

− = 0 (24)

that gives the following system of equations

−v

+M21 + v
′

+ M11 − v
′
− = 0 −v


+M22 + v
′
+ M12 + v


− = 0. (25)

For convenience, let us put this system in a matrix form(
v−
v′

−

)
= N

(
v+

v′
+

)
(26)
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where the matrix N defined by

N :=
(

M22 −M12

−M21 M11

)
(27)

has to give the matrix M−1. Hence, the matrix elements Mij satisfy the property

Mij = 1

detM
Mij (28)

giving the conditions

Mij = |Mij | exp(iφ/2) detM = exp(iφ) |detM‖detN | = 1. (29)

Therefore, the matrices M realize the group U(2). Then, we obtain

Theorem 1. Let the matrices M2×2 and N2×2 be involved in relations (21) and (27) with the
properties (28) and (29). Then

(i) All self-adjoint (s.a.) extensions of the operator ḣ0 are given by a four-parameter family
of (s.a.) operators given by

h0,M2×2 = − d2

dr2
(30)

with the domain

D(h0,M2×2) =
{
u ∈ L2(]0,∞[, dr) ∩ H

2,2
loc (]0,∞[−{R}); u(0±) = 0;(

u+

u′
+

)
= M

(
u−
u′

−

)
;− d2

dr2
u ∈ L2(]0,∞[)

}
. (31)

(ii) All self-adjoint extensions of the operator ḣα,m are given by a four-parameter family of
(s.a.) operators given by

hα,m,M2×2 = − d2

dr2
+

(α + m)2 − 1
4

r2
r > 0 (32)

with the domain

D(hα,m,M2×2) =
{

u ∈ L2(]0,∞[, dr) ∩ H
2,2
loc (]0,∞[−{R});

u(0+) = 0 if (α + m)2 − 1

4
= 0;

(
u+

u′
+

)
= M

(
u−
u′

−

)
;[

− d2

dr2
+

(α + m)2 − 1
4

r2

]
u ∈ L2(]0,∞[)

}
m ∈ Z. (33)

Then, let us introduce in L2(R2) the operator

Hα,M =
m=+∞⊕
m=−∞

U−1hα,m,M2×2U
⊗

11. (34)

By definition, Hα,M is the rigorous mathematical formulation of the formal expression (1). It
provides a slight generalization of HB .

Finally let us summarize in a theorem some relevant properties generated by the U(2)

matrices M and N .
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Theorem 2. Let

σ =
(

0 1

−1 0

)
(35)

and

τ = 1√
2

(
1 1

−1 1

)
. (36)

Then the matrices M and N defined in (21) and (26)–(29) satisfy the following properties:

(i) σMσ = −N t and σNσ = −Mt ;
(ii) σMσM† = (detM)σNσN t = (detN )11;

(iii) (σMσM†)(σNσN†) = (−detM)11 (−detN )11 = 11;
(iv) (τMτ)(τM†τ) = 11;
(v) ττ = σ .

The statement (iv) shows that the matrix U := τMτ is a unitary matrix: UU† = 11 with
U† = τM†τ .

To conclude this letter, let us note that the complete analysis of spectral and scattering
properties of this model requires further technical work and will be thoroughly discussed in a
forthcoming paper.
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